Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.
نویسندگان
چکیده
In response to the colonization by arbuscular mycorrhizal (AM) fungi, plants reprioritize their phosphate (Pi)-uptake strategies to take advantage of nutrient transfer via the fungus. The mechanisms underlying Pi transport are beginning to be understood, and recently, details of the regulation of plant and fungal Pi transporters in the AM symbiosis have been revealed. This review summarizes recent advances in this area and explores current data and hypotheses of how the plant Pi status affects the symbiosis. Finally, suggestions of an interrelationship of Pi and nitrogen (N) in the AM symbiosis are discussed.
منابع مشابه
A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.
Many plants have the capacity to obtain phosphate via a symbiotic association with arbuscular mycorrhizal (AM) fungi. In AM associations, the fungi release phosphate from differentiated hyphae called arbuscules, that develop within the cortical cells, and the plant transports the phosphate across a symbiotic membrane, called the periarbuscular membrane, into the cortical cell. In Medicago trunc...
متن کاملExpression of plant genes for arbuscular mycorrhiza-inducible phosphate transporters and fungal vesicle formation in sorghum, barley, and wheat roots.
Sorghum shows strong growth stimulation on arbuscular mycorrhizal (AM) symbiosis, while barley and wheat show growth depression. We identified the AM-inducible phosphate transporter genes of these cereals. Their protein products play major roles in phosphate absorption from arbuscules, intracellular fungal structures. Unexpectedly, barley and wheat expressed the AM-inducible genes at high level...
متن کاملCommon mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis
Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect w...
متن کاملSymbiosis relationship between some arbuscular mycorrhizal fungi (AMF) and Salsola laricina and its effect on improving plant growth parameters
The aim of this study was to examine the symbiosis relationshipbetween some arbuscular mycorrhizal fungi (AMF) and Salsola laricina (Chenopodiaceae), a non-mycotrophic plant speciesand its effect on improving plant growth parameters. Initially, the development of AMF density was monitored through two parameters including evaluation of mycorrhizal colonization of plant roots and density measurem...
متن کاملPhosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.
Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2007